Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis.

Identifieur interne : 000741 ( Main/Exploration ); précédent : 000740; suivant : 000742

The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis.

Auteurs : Yukio Kurihara [Japon] ; Yuasa Takashi ; Yuichiro Watanabe

Source :

RBID : pubmed:16428603

Descripteurs français

English descriptors

Abstract

It has been reported that some double-stranded RNA (dsRNA) binding proteins interact with small RNA biogenesis-related RNase III enzymes. However, their biological significance is poorly understood. Here we examine the relationship between the Arabidopsis microRNA- (miRNA) producing enzyme DCL1 and the dsRNA binding protein HYL1. In the hyl1-2 mutant, the processing steps of miR163 biogenesis were partially impaired; increased accumulation of pri-miR163 and reduced accumulation of short pre-miR163 and mature miR163 as well as misplaced cleavages in the stem structure of pri-miR163 were detected. These misplaced cleavages were similar to those previously observed in the dcl1-9 mutant, in which the second double-stranded RNA binding domain of the protein was disrupted. An immunoprecipitation assay using Agrobacterium-mediated transient expression in Nicotiana benthamiana showed that HYL1 was able to form a complex with wild-type DCL1 protein, but not with the dcl1-9 mutant protein. We also examined miR164b and miR166a biogenesis in hyl1-2 and dcl1-9. Increased accumulation of pri-miRNAs and reduced accumulation of pre-miRNAs and mature miRNAs were detected. Misplaced cleavage on pri-miR164b was observed only in dcl1-9 but not in hyl1-2, whereas not on pri-miR166a in either mutant. These results indicate that HYL1 has a function in assisting efficient and precise cleavage of pri-miRNA through interaction with DCL1.

DOI: 10.1261/rna.2146906
PubMed: 16428603
PubMed Central: PMC1370900


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis.</title>
<author>
<name sortKey="Kurihara, Yukio" sort="Kurihara, Yukio" uniqKey="Kurihara Y" first="Yukio" last="Kurihara">Yukio Kurihara</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Takashi, Yuasa" sort="Takashi, Yuasa" uniqKey="Takashi Y" first="Yuasa" last="Takashi">Yuasa Takashi</name>
</author>
<author>
<name sortKey="Watanabe, Yuichiro" sort="Watanabe, Yuichiro" uniqKey="Watanabe Y" first="Yuichiro" last="Watanabe">Yuichiro Watanabe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16428603</idno>
<idno type="pmid">16428603</idno>
<idno type="doi">10.1261/rna.2146906</idno>
<idno type="pmc">PMC1370900</idno>
<idno type="wicri:Area/Main/Corpus">000767</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000767</idno>
<idno type="wicri:Area/Main/Curation">000767</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000767</idno>
<idno type="wicri:Area/Main/Exploration">000767</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis.</title>
<author>
<name sortKey="Kurihara, Yukio" sort="Kurihara, Yukio" uniqKey="Kurihara Y" first="Yukio" last="Kurihara">Yukio Kurihara</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Takashi, Yuasa" sort="Takashi, Yuasa" uniqKey="Takashi Y" first="Yuasa" last="Takashi">Yuasa Takashi</name>
</author>
<author>
<name sortKey="Watanabe, Yuichiro" sort="Watanabe, Yuichiro" uniqKey="Watanabe Y" first="Yuichiro" last="Watanabe">Yuichiro Watanabe</name>
</author>
</analytic>
<series>
<title level="j">RNA (New York, N.Y.)</title>
<idno type="ISSN">1355-8382</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Base Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Cell Cycle Proteins (genetics)</term>
<term>Cell Cycle Proteins (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>RNA Processing, Post-Transcriptional (MeSH)</term>
<term>RNA, Double-Stranded (metabolism)</term>
<term>RNA-Binding Proteins (genetics)</term>
<term>RNA-Binding Proteins (metabolism)</term>
<term>Rhizobium (genetics)</term>
<term>Ribonuclease III (genetics)</term>
<term>Ribonuclease III (metabolism)</term>
<term>Tobacco (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN double brin (métabolisme)</term>
<term>Arabidopsis (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Maturation post-transcriptionnelle des ARN (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines de liaison à l'ARN (génétique)</term>
<term>Protéines de liaison à l'ARN (métabolisme)</term>
<term>Protéines du cycle cellulaire (génétique)</term>
<term>Protéines du cycle cellulaire (métabolisme)</term>
<term>Rhizobium (génétique)</term>
<term>Ribonuclease III (génétique)</term>
<term>Ribonuclease III (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Tabac (génétique)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cell Cycle Proteins</term>
<term>MicroRNAs</term>
<term>RNA-Binding Proteins</term>
<term>Ribonuclease III</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Rhizobium</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines du cycle cellulaire</term>
<term>Rhizobium</term>
<term>Ribonuclease III</term>
<term>Tabac</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cell Cycle Proteins</term>
<term>MicroRNAs</term>
<term>RNA, Double-Stranded</term>
<term>RNA-Binding Proteins</term>
<term>Ribonuclease III</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN double brin</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines du cycle cellulaire</term>
<term>Ribonuclease III</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>RNA Processing, Post-Transcriptional</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Maturation post-transcriptionnelle des ARN</term>
<term>Mutation</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Sites de fixation</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It has been reported that some double-stranded RNA (dsRNA) binding proteins interact with small RNA biogenesis-related RNase III enzymes. However, their biological significance is poorly understood. Here we examine the relationship between the Arabidopsis microRNA- (miRNA) producing enzyme DCL1 and the dsRNA binding protein HYL1. In the hyl1-2 mutant, the processing steps of miR163 biogenesis were partially impaired; increased accumulation of pri-miR163 and reduced accumulation of short pre-miR163 and mature miR163 as well as misplaced cleavages in the stem structure of pri-miR163 were detected. These misplaced cleavages were similar to those previously observed in the dcl1-9 mutant, in which the second double-stranded RNA binding domain of the protein was disrupted. An immunoprecipitation assay using Agrobacterium-mediated transient expression in Nicotiana benthamiana showed that HYL1 was able to form a complex with wild-type DCL1 protein, but not with the dcl1-9 mutant protein. We also examined miR164b and miR166a biogenesis in hyl1-2 and dcl1-9. Increased accumulation of pri-miRNAs and reduced accumulation of pre-miRNAs and mature miRNAs were detected. Misplaced cleavage on pri-miR164b was observed only in dcl1-9 but not in hyl1-2, whereas not on pri-miR166a in either mutant. These results indicate that HYL1 has a function in assisting efficient and precise cleavage of pri-miRNA through interaction with DCL1.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16428603</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>03</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1355-8382</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2006</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>RNA (New York, N.Y.)</Title>
<ISOAbbreviation>RNA</ISOAbbreviation>
</Journal>
<ArticleTitle>The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>206-12</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>It has been reported that some double-stranded RNA (dsRNA) binding proteins interact with small RNA biogenesis-related RNase III enzymes. However, their biological significance is poorly understood. Here we examine the relationship between the Arabidopsis microRNA- (miRNA) producing enzyme DCL1 and the dsRNA binding protein HYL1. In the hyl1-2 mutant, the processing steps of miR163 biogenesis were partially impaired; increased accumulation of pri-miR163 and reduced accumulation of short pre-miR163 and mature miR163 as well as misplaced cleavages in the stem structure of pri-miR163 were detected. These misplaced cleavages were similar to those previously observed in the dcl1-9 mutant, in which the second double-stranded RNA binding domain of the protein was disrupted. An immunoprecipitation assay using Agrobacterium-mediated transient expression in Nicotiana benthamiana showed that HYL1 was able to form a complex with wild-type DCL1 protein, but not with the dcl1-9 mutant protein. We also examined miR164b and miR166a biogenesis in hyl1-2 and dcl1-9. Increased accumulation of pri-miRNAs and reduced accumulation of pre-miRNAs and mature miRNAs were detected. Misplaced cleavage on pri-miR164b was observed only in dcl1-9 but not in hyl1-2, whereas not on pri-miR166a in either mutant. These results indicate that HYL1 has a function in assisting efficient and precise cleavage of pri-miRNA through interaction with DCL1.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kurihara</LastName>
<ForeName>Yukio</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takashi</LastName>
<ForeName>Yuasa</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Yuichiro</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>RNA</MedlineTA>
<NlmUniqueID>9509184</NlmUniqueID>
<ISSNLinking>1355-8382</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C420966">HYL1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012330">RNA, Double-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.26.3</RegistryNumber>
<NameOfSubstance UI="C402383">DCL1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.26.3</RegistryNumber>
<NameOfSubstance UI="D043244">Ribonuclease III</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012323" MajorTopicYN="Y">RNA Processing, Post-Transcriptional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012330" MajorTopicYN="N">RNA, Double-Stranded</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043244" MajorTopicYN="N">Ribonuclease III</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16428603</ArticleId>
<ArticleId IdType="pii">12/2/206</ArticleId>
<ArticleId IdType="doi">10.1261/rna.2146906</ArticleId>
<ArticleId IdType="pmc">PMC1370900</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2004 Nov 11;432(7014):231-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Nov 11;432(7014):235-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Dec;36(12):1282-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15565108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Dec 14;14(23):2162-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15589161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Dec 15;18(24):3016-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 11;307(5711):932-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jan;57(2):173-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Jul;3(7):e235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15918769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Jul;3(7):e236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15918770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Aug 23;15(16):1501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16111943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2145-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13401-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Nov;7(11):487-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Sep 26;301(5641):1921-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14512631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jan 27;101(4):1093-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Feb 17;14(4):346-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 May;2(5):E104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jun 22;14(12):1035-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15202996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12753-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Mar;11(3):605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9107046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Nov 19;306(5700):1377-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15550672</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
<orgName>
<li>Université de Tokyo</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Takashi, Yuasa" sort="Takashi, Yuasa" uniqKey="Takashi Y" first="Yuasa" last="Takashi">Yuasa Takashi</name>
<name sortKey="Watanabe, Yuichiro" sort="Watanabe, Yuichiro" uniqKey="Watanabe Y" first="Yuichiro" last="Watanabe">Yuichiro Watanabe</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Kurihara, Yukio" sort="Kurihara, Yukio" uniqKey="Kurihara Y" first="Yukio" last="Kurihara">Yukio Kurihara</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000741 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000741 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16428603
   |texte=   The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16428603" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024